On the Lp-stability of quasi-hierarchical Powell-Sabin B-splines
نویسندگان
چکیده
Quasi-hierarchical Powell-Sabin splines are C-continuous quadratic splines defined on a locally refined hierarchical triangulation. They admit a compact representation in a normalized B-spline basis. We prove that the quasi-hierarchical basis is in general weakly Lpstable, but for a broad class of hierarchical triangulations it is even strongly Lp-stable.
منابع مشابه
Quasi-hierarchical Powell-Sabin B-splines
Hierarchical Powell-Sabin splines are C-continuous piecewise quadratic polynomials defined on a hierarchical triangulation. The mesh is obtained by partitioning an initial conforming triangulation locally with a triadic split, so that it is no longer conforming. We propose a normalized quasi-hierarchical basis for this spline space. The B-spline basis functions have a local support, they form a...
متن کاملComputer aided geometric design with Powell-Sabin splines
Powell-Sabin splines are C-continuous quadratic splines defined on an arbitrary triangulation. Their construction is based on a particular split of each triangle in the triangulation into six smaller triangles. In this article we give an overview of the properties of Powell-Sabin splines in the context of computer aided geometric design. These splines can be represented in a compact normalized ...
متن کاملSurface Compression with Hierarchical Powell-Sabin B-splines
We show how to construct a stable hierarchical basis for piecewise quadratic C continuous splines defined on Powell–Sabin triangulations. We prove that this hierarchical basis is well suited for compressing surfaces. Our compression method does not require the construction of wavelets which are usually expensive to compute, but instead we construct a stable quasi-interpolation scheme for our sp...
متن کاملMultivariate normalized Powell-Sabin B-splines and quasi-interpolants
We present the construction of a multivariate normalized B-spline basis for the quadratic C-continuous spline space defined over a triangulation in R (s ≥ 1) with a generalized Powell-Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction can be interpreted geometrically as the determination of a set of s-simplices ...
متن کاملQuadratic spline quasi-interpolants on Powell-Sabin partitions
In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.
متن کامل